G-2/239/21

Roll No.

M.Sc. II Semester Examination, 2021 PHYSICS

Paper I

(Electrodynamics)

Time: 3 Hours] [Max. Marks: 80

Note: All questions are compulsory. Question Paper comprises of 3 sections. Section A is objective type/multiple choice questions with no internal choice. Section B is short answer type with internal choice. Section C is long answer type with internal choice.

SECTIONA

 $1 \times 8 = 8$

(Objective Type Questions)

Choose the correct answer:

- **1.** The electric field inside a conducting material of radius *R* is :
 - (a) $\frac{9}{4\pi\epsilon_0 r^2}$
- (b) Zero
- (c) $\frac{9}{4\pi\varepsilon_0 R^2}$
- (d) None of these.
- **2.** In terms of electromagnetic potentials (A and ϕ), the field vector \overline{E} and \overline{B} are given by :

P.T.O.

(a) $\overline{B} = \operatorname{curl} \overline{A}$ and $\overline{E} = \operatorname{grad} \phi - \frac{\partial \overline{A}}{\partial t}$

(b)
$$\overline{B} = \operatorname{curl} \overline{A}$$
 and $\overline{E} = -\operatorname{grad} \phi + \frac{\partial \overline{A}}{\partial t}$

(c)
$$\overline{B} = \operatorname{curl} \overline{A}$$
 and $\overline{E} = \operatorname{grad} \phi + \frac{\partial \overline{A}}{\partial t}$

(d)
$$\overline{B} = \operatorname{curl} \overline{A}$$
 and $\overline{E} = -\operatorname{grad} \phi - \frac{\partial \overline{A}}{\partial t}$.

3. The energy per unit time, per unit area, transported by the electromagnetic fields is expressed as:

(a)
$$\bar{S} = \left(\frac{1}{\mu_2}\right)(\bar{E} \times \bar{B})$$
 (b) $\bar{S} = (\bar{E} \times \bar{B})$

(c)
$$\bar{S} = \mu_0(\bar{E} \times \bar{B})$$
 (d) $\bar{S} = \frac{1}{\epsilon_0}(\bar{E} \times \bar{B})$.

4. The Maxwell's equation which remains unchanged when a medium changes is :

(a)
$$\nabla . \overline{B} = 0$$

(b)
$$\overline{\nabla}.\overline{B} = \frac{\rho}{\varepsilon_0}$$

(c)
$$\overline{\nabla}.\overline{B} = \mu_0 \overline{J} + \mu_0 \varepsilon_0 \frac{\partial \overline{E}}{\partial t}$$
 (d) None of these.

5. The total energy stored in electromagnetic field is:

G-2/239/21

(a) $\frac{\varepsilon_0}{2} \int E^2 dv$ (b) $\frac{1}{2\mu_0} \int E^2 dv$

- (c) $\frac{1}{2} \int \left[\varepsilon_0 E^2 + \left(\frac{1}{\mu_0} \right) B^2 \right] dv$
- (d) $\frac{\varepsilon_0 \mu_0}{2} \int E^2 B^2 dv$
- **6.** When angle of incidence is greater than Brewster's angle, the reflected ray suffers a phase change of:
 - (a) π

(b) $\frac{\pi}{2}$

(c) 0

- (d) 2π .
- **7.** For good conductors, skin depth varies inversely with power of frequency.
 - (a) One

(b) Two

(c) Half

- (d) Three.
- **8.** The potential which exhibit the dependence of the potential on the velocity of the particle is known as:
 - (a) Scalar Potential (b) Vector Potential
 - (c) Lienard Wiechert Potential
 - (d) Retarded Potential.

SECTION B

 $\begin{bmatrix} 4 \end{bmatrix}$

 $6 \times 4 = 24$

(Short Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

1. What is equation of continuity? Derive it. Write down Maxwell's equation in differential and integral form both?

Or

Explain mathematically plane e.m. waves in free space.

Unit-II

2. Explain boundary conditions at the interface of two media.

Or

How the experimental verification of Fresnel's equations can be done?

Unit-III

3. Write down postulates of Einstein's special theory of relativity? Also explain Gallilean transformation.

Or

Explain Transformation of differentail operator and invariance of D'Alembertian operator.

Unit-IV

4. Explain Lorentz Gange.

Or

Derive Abrahm-Lorentz formula.

SECTION C

 $12 \times 4 = 48$

(Long Answer Type Questions)

Note: Attempt one question from each unit.

Unit-I

- **1.** Derive Maxwell's equations in some particular cases:
 - (a) In free space,
 - (b) In linear isotropic medium.

Or

Describe mathematically propagation of e.m. waves in ionized gases.

Unit-II

- **2.** Derive Fresnel's equations in following cases:
 - **Case I :** E-vector is perpendicular to plane of incidence.
 - **Case II :** E-vector is parallel to plane of incidence.

Or

Explain wave gride: TM and TE modes.

Unit-III

3. Explain Lorentz transformation and its consequences: Length contraction, Time dilation and Velocity addition.

Or

Explain transformation of electromagnetic potentials A and ϕ . Also write down Lorentz condition in covarient form.

Unit-IV

4. Explain mathematically Lienard-Wiechart potentials.

Or

Explain radiation from a linear Half-Wave antenna.

* * * * * C * * * * *